Rationality questions for Fano schemes of intersections of two quadrics

(joint work with Lena Ji)

Fumiaki Suzuki Leibniz University Hannover

April 12, 2024

 $\begin{array}{l} \mbox{Introduction}\\ \mbox{Hyperbolic reductions}\\ N \mbox{ odd}\\ N \mbox{ even and } k = \mathbb{R} \end{array}$

Table of Contents

2 Hyperbolic reductions

④ N even and $k=\mathbb{R}$

Fumiaki Suzuki

k: arbitrary field of characteristic $\neq 2$ $X \subset \mathbb{P}^N$: smooth complete intersections of 2 quadrics

 $r \ge 0$, $F_r(X) :=$ Fano scheme of *r*-planes (i.e., $\mathbb{P}^r \subset \mathbb{P}^N$) on *X*. Description of $F_r(X)$:

r	N odd	N even
$r = \lfloor rac{N}{2} floor - 1$ (max)	torsor under an abelian variety (Weil '50's)	finite, not geometrically integral
$0 \le r \le \lfloor \frac{N}{2} floor - 2$	Fano, i.e., <i>—K</i> ample	Fano, i.e., <i>—K</i> ample

N odd: $F_r(X)$ is geometrically a certain moduli of vector bundles on a hyperelliptic curve (Desale–Ramanan '78, Ramanan '81).

 \rightarrow arithmetic applications

A variety is **rational** if it is birational to a projective space.

If there exists a line $L \subset X$ defined over k, consider the projection away from $L: \pi_L: X \dashrightarrow \mathbb{P}^{N-2}$.

Fibers of π_L ?

 π_L is birational, hence X is rational.

A variety is **rational** if it is birational to a projective space.

If there exists a line $L \subset X$ defined over k, consider the projection away from $L: \pi_L: X \dashrightarrow \mathbb{P}^{N-2}$.

Fibers of π_L ?

 π_L is birational, hence X is rational.

Theorem 1 (Ji-S., '24)

If $F_{r+1}(X)(k) \neq \emptyset$, then $F_r(X)$ is rational.

Immediate consequence:

Corollary

 $F_r(X)$ is geometrically rational for all $0 \le r \le \lfloor \frac{N}{2} \rfloor - 2$.

r = 0, ⌊N/2⌋ - 2: known (latter by combining: Desale-Ramanan '77, Newstead '80, Bauer '91, Casagrande '15)
0 < r < ⌊N/2⌋ - 2: new, even over ℂ!

- * 伺 * * き * * き * … き

Theorem 2 (Ji–S., '24)

For $N \ge 6$, the following are equivalent:

- $F_1(X)$ is separably unirational;
- **2** $F_1(X)$ is unirational;

If $k = \mathbb{R}$, the above result holds for $F_r(X)$ for all $0 \le r \le \lfloor \frac{N}{2} \rfloor - 2$.

This extends an analogous result for $F_0(X) = X$ (Manin '86, Knecht '15, Colliot-Thélène–Sansuc–Swinnerton-Dyer '87, Benoist–Wittenberg '23).

Table of Contents

④ N even and $k=\mathbb{R}$

Fumiaki Suzuki

Let $\varphi \colon \mathcal{Q} \to \mathbb{P}^1$ be the pencil of quadrics, associated to X.

Assume $F_r(X)(k) \neq \emptyset$ and fix $\ell \in F_r(X)(k)$.

Fibers of $\pi_{\ell} \times id$:

Fumiaki Suzuki

Similarly,

 $X \xrightarrow{\pi_{\ell}} \mathbb{P}^{N-r-1} \supset \widetilde{\mathcal{Q}}^{(r)}$:=locus of special (and more special) fibers

Fibers of π_{ℓ} :

Note

$$\widetilde{\mathcal{Q}}^{(r)} \xrightarrow{\sim} \mathcal{Q}^{(r)}, \ m \mapsto \langle \ell, m \rangle,$$

where the inverse is given by $\mathbb{P}^{N-r-1}\times\mathbb{P}^1\to\mathbb{P}^{N-r-1}$.

The birational equivalence class of $\mathcal{Q}^{(r)}$ does NOT depend on ℓ . Indeed,

$$\mathcal{Q}_{k(\mathbb{P}^{1})} \simeq \mathcal{Q}_{k(\mathbb{P}^{1})}^{(r)} \perp$$
 (hyperbolic space)

as quadratic spaces, hence the Witt cancellation theorem shows that the isomorphism class of $\mathcal{Q}_{k(\mathbb{P}^1)}^{(r)}$ does not depend on ℓ .

Here is a birational structure theorem of $F_r(X)$ in terms of $Q^{(r)}$.

Theorem 3 (Ji–S., '24)

One of the following conditions holds:

- $F_r(X)$ is birational to Sym^{r+1} $Q^{(r)}$;
- One is even and $r = \lfloor \frac{N}{2} \rfloor 1$, in which case $F_r(X)$ is finite and not geometrically integral.

Two special cases were previously known before:

 r = 0, which claims X ~ Q⁽⁰⁾ (Colliot-Thélène-Sansuc-Swinnerton-Dyer '87);

• N is odd,
$$r = \lfloor \frac{N}{2} \rfloor - 1$$
, and $k = \overline{k}$ (Reid '72).

Proof of Thm 3:

r = 1: Let $m \in F_1(X)$ be general. Then $\langle \ell, m \rangle = \mathbb{P}^3$.

$$\langle \ell, m \rangle \cap X = \ell \cup m \cup m_1 \cup m_2$$

Define $F_1(X) \dashrightarrow \text{Sym}^2 \mathcal{Q}^{(1)}$, $m \mapsto (m_1, m_2)$, which is generically one-to-one onto its image. Similar for r > 1.

Finally, dim $F_r(X) = \dim \operatorname{Sym}^{r+1} Q^{(r)} = (r+1)(N-2r-2)$, hence the above map is dominant, thus birational. Q.E.D.

イロト (得) (ヨト (ヨト) ほ

Proof of Thm 3:

r = 1: Let $m \in F_1(X)$ be general. Then $\langle \ell, m \rangle = \mathbb{P}^3$.

Define $F_1(X) \longrightarrow \text{Sym}^2 \mathcal{Q}^{(1)}$, $m \mapsto (m_1, m_2)$, which is generically one-to-one onto its image. Similar for r > 1.

Finally, dim $F_r(X) = \dim \operatorname{Sym}^{r+1} Q^{(r)} = (r+1)(N-2r-2)$, hence the above map is dominant, thus birational. Q.E.D.

<u>Thm 3 \Rightarrow Thm 1</u>:

If $F_r(X)(k) \neq \emptyset$, then $\phi^{(r)} : \mathcal{Q}^{(r)} \to \mathbb{P}^1$ has a section. $\Rightarrow \mathcal{Q}^{(r)}$ is rational. $\Rightarrow F_r(X) \sim \text{Sym}^{r+1} \mathcal{Q}^{(r)}$ is rational. Q.E.D.

We have used:

A symmetric power of a rational variety is rational (Mattuck '69).

<u>Thm 3 \Rightarrow Thm 2 (k arbitrary)</u>:

W.T.S. $\forall N \geq 6$, $F_1(X)(k) \neq \emptyset \Rightarrow F_1(X)$ separably uniratinonal.

A symmetric power of a separably unirational variety is separably unirational.

E.T.S. $\forall N \geq 6$, $F_1(X)(k) \neq \emptyset \Rightarrow Q^{(1)}$ separably uniratinonal.

We prove this by induction on N

 $\begin{array}{l} \underline{N=6} \colon X \subset \mathbb{P}^6\\ \varphi^{(1)} \colon \mathcal{Q}^{(1)} \to \mathbb{P}^1 \text{ is a conic bundle with 7 singular fibers.}\\ \\ \text{Moreover, } \mathcal{Q}^{(1)}(k) \neq \emptyset,\\ \text{because } \cap_{p \in \ell} T_p X = \mathbb{P}^2 \supset \ell \text{ and } (\cap_{p \in \ell} T_p X) \cap X = \ell. \end{array}$

Such a conic bundle has a dominant map from \mathbb{P}^2 of degree 8 (Kollár–Mella '17).

 $\therefore \mathcal{Q}^{(1)}$ is separably unirational. (Recall char $k \neq 2$.)

$\underline{N > 6}: X \subset \mathbb{P}^N$

Choose a general pencil of hyperplane sections of X containing ℓ . We get $\mathcal{Q}^{(1)} \dashrightarrow \mathbb{P}^1$ whose generic fiber equals the hyperbolic reduction of $Y \subset \mathbb{P}^{N-1}$ with respect to ℓ .

By the induction hypothesis, the generic fiber is separably unirational, and so is $\mathcal{Q}^{(1)}$. Q.E.D.

<u>Thm 3 \Rightarrow Thm 2 ($k = \mathbb{R}$):</u>

$$\begin{split} \widetilde{\mathcal{Q}}^{(r)} &\subset \mathbb{P}^{N-r-1} \text{ has odd degree.} \\ (\text{For instance, } \widetilde{\mathcal{Q}}^{(0)} &\subset \mathbb{P}^{N-1} \text{ is a cubic hypersurface.}) \\ &\Rightarrow \mathcal{Q}^{(r)} \text{ has a 0-cycle of degree 1.} \\ &\Rightarrow \mathcal{Q}^{(r)}(\mathbb{R}) \neq \emptyset \end{split}$$

Apply a unirationality result (Kollár '99) to the quadric fibration $\phi^{(r)}: \mathcal{Q}^{(r)} \to \mathbb{P}^1.$ Q.E.D.

A conic bundle over \mathbb{P}^1 with a 0-cycle of degree 1 does not necessarily have a *k*-point (Colliot-Thélène–Coray '79).

Next: We will further analyze rationality of $F_r(X)$ for $r = \lfloor \frac{N}{2} \rfloor - 2$, the second maximal case.

<ロト < 同ト < ヨト < ヨト

疌

Fumiaki Suzuki

Table of Contents

2 Hyperbolic reductions

N even and $k = \mathbb{R}$

< □ > < □ > < □ > < □ >

 $N := 2g + 1 \ (g \ge 2)$

max = g - 1, second maximal = g - 2

Theorem 4 (Ji-S., '24)

Let $X \subset \mathbb{P}^{2g+1}$. Then: $F_{g-2}(X)(k) \neq \emptyset$ and $\mathcal{Q}^{(g-2)}$ rational $\Leftrightarrow F_{g-1}(X)(k) \neq \emptyset$.

• g = 2: $X \subset \mathbb{P}^5$ is rational $\Leftrightarrow F_1(X)(k) \neq \emptyset$ (Hassett–Tschinkel 18' for $k = \mathbb{R}$, Benoist–Wittenberg '23 for k arbitrary).

イロト (得) (ヨト (ヨト) ほ

- $g \ge 2$: partial converse to Thm 1, different from the full converse by a symmetric power: $\mathcal{Q}^{(g-2)} \leftrightarrow F_{g-2}(X) \sim \operatorname{Sym}^{g-1} \mathcal{Q}^{(g-2)}.$
- An analogue may fail for N even.

Towards the proof of Thm 4:

 $F_{g-1}(X)$ is a torsor under the Jacobian of C, where C is a hyperelliptic curve of genus g associated to $\varphi \colon Q \to \mathbb{P}^1$ (Wang '18).

W.T.S. $F_{g-1}(X)$ splits $\Leftrightarrow \mathcal{Q}^{(g-2)}$ defined & rational.

Introduction Hyperbolic reductions N odd $N \text{ even and } k = \mathbb{R}$

Note: dim $\mathcal{Q}^{(g-2)} = 3$.

Idea: Clemens-Griffiths method à la Benoist-Wittenberg.

The goal is to show that $F_{g-1}(X)$ is a torsor under the intermediate Jacobian of $\mathcal{Q}^{(g-2)}$ (\cong Jac(C) as p.p.a.v.) and it splits when $\mathcal{Q}^{(g-2)}$ is rational.

This involves analysis on the algebraic equivalence class of a section of the quadric surface fibration $\phi^{(g-2)}: \mathcal{Q}^{(g-2)} \to \mathbb{P}^1$.

Table of Contents

2 Hyperbolic reductions

ロトス団とスポトス 聞く ろくの

 $N := 2g (g \ge 2)$

max = g - 1, second maximal = g - 2

Theorem 5 (Ji–S., 24')

Let $X \subset \mathbb{P}^{2g}$ over \mathbb{R} . Then: $F_{g-2}(X)$ rational $\Leftrightarrow F_{g-2}(X)(\mathbb{R})$ non-empty and connected.

- ⇒ is true for all smooth projective varieties over ℝ (Comessatti, 1912).
- X ⊂ P⁶_ℝ rational ⇔ X(ℝ) non-empty and connected (Hassett-Kollár-Tschinkel '22).

・ 同 ト ・ ヨ ト ・ ヨ ト

• An analogue may fail for N odd.

Towards the proof of Thm 5:

Let X as in Thm 5 and assume $F_{g-2}(X)(\mathbb{R}) \neq \emptyset$.

 $\varphi^{(g-2)} \colon \mathcal{Q}^{(g-2)} \to \mathbb{P}^1$ is a conic bundle, hence $\mathcal{Q}^{(g-2)}$ is a geometrically rational surface.

A geometrically rational surface defined over \mathbb{R} is rational if and only if its real locus is non-empty and connected (Comessatti 1913).

We get

$$\begin{array}{c} \mathcal{Q}^{(g-2)} \text{ rational} & \stackrel{\text{Comessatti}}{\longleftrightarrow} \mathcal{Q}^{(g-2)}(\mathbb{R}) \text{ non-empty and connected} \\ \\ \text{Thm 3 + Mattuck} & & & & & \\ F_{g-2}(X) \text{ rational}_{Comessatti} F_{g-2}(X)(\mathbb{R}) \text{ non-empty and connected}, \end{array}$$

where the right vertical arrow follows by studying the image of

$$\operatorname{Sym}^{g-1} \mathcal{Q}^{(g-2)}(\mathbb{R}) \to \operatorname{Sym}^{g-1} \mathbb{P}^1(\mathbb{R}) \xrightarrow{\sim} \mathbb{P}^{g-1}(\mathbb{R}).$$

문▶ 문

Thank you!

臣