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Introduction

k: arbitrary field of characteristic # 2
X C PN: smooth complete intersections of 2 quadrics

r >0, F,(X) := Fano scheme of r-planes (i.e., P" ¢ PN) on X.
Description of F,(X):

r N odd N even
r= LNJ -1 torsqr unde_r finite,
2 an abelian variety ) :
(max) (Weil '50's) not geometrically integral
Fano Fano
<r<|¥ - ’ ’
0<r<|z]-2 i.e., —K ample i.e., —K ample

N odd: F,(X) is geometrically a certain moduli of vector bundles
on a hyperelliptic curve (Desale-Ramanan '78, Ramanan '81).

— arithmetic applications
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Introduction

A variety is rational if it is birational to a projective space.

If there exists a line L C X defined over k, consider the projection
away from L: 7y : X --» PN=2,

Fibers of w7
2

7y is birational, hence X is rational.
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Introduction

Theorem 1 (Ji-S., '24)

If Frp1(X)(k) # 0, then F,(X) is rational.

Immediate consequence:

F.(X) is geometrically rational for all 0 < r < |§] —2.

o r=0, L%J — 2: known (latter by combining: Desale-Ramanan
'77, Newstead '80, Bauer '91, Casagrande '15)

© 0<r<|5]—2: new, even over C!
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Introduction

Theorem 2 (Ji-S., '24)

For N > 6, the following are equivalent:
@ Fi(X) is separably unirational;
@ F1(X) is unirational;

0 A (X)(k) #
If k =R, the above result holds for F,(X) forall 0 < r < |¥| 2.

v

This extends an analogous result for Fo(X) = X
(Manin '86, Knecht '15, Colliot-Thélene-Sansuc—Swinnerton-Dyer
'87, Benoist-Wittenberg '23).
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Hyperbolic reductions

Let ¢: Q — P! be the pencil of quadrics, associated to X.
Assume F.(X)(k) # 0 and fix £ € F.(X)(k).

T, pN-r-1 y pl D Q") := locus of special fibers

A Z/
P! ©(") quadric fibration (hyperbolic reduction of ()

Fibers of m, x id:

Q

- H>r~|

genera| SPecia\
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Hyperbolic reductions

Similarly,
X T PN==1 5 9(0:=locus of special (and more special) fibers

Fibers of m:

genera | sPecio\ more  49eCix \

Note B
Q(r) :i') Q(r)a m— <€> m>7

where the inverse is given by PN=r—1 x pl — pN-r—1
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Hyperbolic reductions

The birational equivalence class of Q(") does NOT depend on .

Indeed,
Qu(pr) = Q%m) L (hyperbolic space)

as quadratic spaces, hence the Witt cancellation theorem shows
that the isomorphism class of Q%Pl) does not depend on /.
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Hyperbolic reductions

Here is a birational structure theorem of F,(X) in terms of Q(").

Theorem 3 (Ji-S., '24)

One of the following conditions holds:
@ F.(X) is birational to Sym" ™t Q(");
@ Nisevenand r =[] — 1, in which case F,(X) is finite and
not geometrically integral.

Two special cases were previously known before:

e r =0, which claims X ~ Q(©)
(Colliot-Thélene-Sansuc—Swinnerton-Dyer '87);

o Nisodd, r=|%| -1, and k = k (Reid '72).
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Hyperbolic reductions

Proof of Thm 3:
r=1: Let m € F(X) be general. Then (¢, m) = P3.

e

S

(€, m)NX = LUmUm;Umy

/

Define F1(X) --» Sym? QM) m — (my, my), which is generically
one-to-one onto its image. Similar for r > 1.

Finally, dim F,(X) = dim Sym™™ Q(") = (r + 1)(N — 2r — 2),
hence the above map is dominant, thus birational. Q.E.D.
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Hyperbolic reductions

Thm 3 = Thm 1:

If F,(X)(k) # @, then ¢(): Q") — P! has a section.
= Q") is rational.
= F,(X) ~ Sym™™ Q() is rational. Q.E.D.

We have used:
A symmetric power of a rational variety is rational (Mattuck '69).
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Hyperbolic reductions

Thm 3 = Thm 2 (k arbitrary):
W.T.S. VN > 6, F1(X)(k) # 0 = F1(X) separably uniratinonal.

A symmetric power of a separably unirational variety is separably
unirational.

ET.S. VN > 6, Fi(X)(k) # 0 = Q1) separably uniratinonal.

We prove this by induction on N

Fumiaki Suzuki



Hyperbolic reductions

N=6 XcCP°

oM M) 5 Pl is a conic bundle with 7 singular fibers.
Moreover, QM) (k) # 0,
because Nper TpX =P2 D £ and (Mper TpX) N X = ¢.

2

P

Such a conic bundle has a dominant map from P? of degree 8
(Kollar-Mella '17).

. QW) is separably unirational. (Recall chark # 2.)
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Hyperbolic reductions

N>6: X cPN
Choose a general pencil of hyperplane sections of X containing £.

We get Q) ——5 P! whose generic fiber equals the hyperbolic
reduction of Y C PN~ with respect to .

By the induction hypothesis, the generic fiber is separably
unirational, and so is Q(1). Q.E.D.
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Hyperbolic reductions

Thm 3 = Thm 2 (k =R):

9N c PN=r=1 has odd degree.

(For instance, Q(® c PN~1 is a cubic hypersurface.)
= Q) has a 0-cycle of degree 1.

= Q(R) # (

Apply a unirationality result (Kolldr '99) to the quadric fibration
#(N: 0 — pt. Q.E.D.

A conic bundle over P! with a O-cycle of degree 1 does not
necessarily have a k-point (Colliot-Thélene-Coray '79).
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Hyperbolic reductions

Next: We will further analyze rationality of F,(X) for r = ng -2,
the second maximal case.
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N:=2g+1(g>2)

max = g — 1, second maximal = g — 2

Theorem 4 (Ji-S., '24)

Let X C P?6*1. Then:
Fg2(X)(k) # 0 and Q=2 rational < F,_1(X)(k) # 0.

e g =2: X CP®is rational & F(X)(k) #0
(Hassett—Tschinkel 18’ for k = R, Benoist—Wittenberg '23 for
k arbitrary).

@ g > 2: partial converse to Thm 1, different from the full
converse by a symmetric power:
0e—2) o Fgo(X) ~ Sym&~1 Qle—2),

@ An analogue may fail for N even.
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Towards the proof of Thm 4:

Fg—1(X) is a torsor under the Jacobian of C, where C is a
hyperelliptic curve of genus g associated to : Q — P! (Wang

'18).
— P!
\ S

W.T.S. Fz_1(X) splits < Q=2 defined & rational.

Fumiaki Suzuki




Note: dim Q(6=2) =3,
Idea: Clemens—Griffiths method a la Benoist-Wittenberg.

The goal is to show that Fz_1(X) is a torsor under the
intermediate Jacobian of Q(8=2) (= Jac(C) as p.p.a.v.) and it
splits when Q(&=2) s rational.

This involves analysis on the algebraic equivalence class of a
section of the quadric surface fibration ¢(&=2): Q(&=2) _, pt,
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N even and k =R

N:=2g (g >2)

max = g — 1, second maximal = g — 2

Theorem 5 (Ji-S., 24’)

Let X C P28 over R. Then:
Fg—2(X) rational < Fz_2(X)(R) non-empty and connected.

@ = is true for all smooth projective varieties over R
(Comessatti, 1912).

e X C IP% rational < X(R) non-empty and connected
(Hassett—Kollar—Tschinkel '22).

@ An analogue may fail for N odd.
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N even and k =R

Towards the proof of Thm 5:
Let X as in Thm 5 and assume Fz_»(X)(R) # 0.

<p(g_2): Q(g_2) — P! is a conic bundle, hence Q(g_2) is a
geometrically rational surface.

A geometrically rational surface defined over R is rational if and
only if its real locus is non-empty and connected (Comessatti
1913).
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N even and k =R

We get

0(e—2) rational L2 (6-2)(R) non-empty and connected

Thm 3 + Mattuckﬂ ﬂ

Fg—o(X) rational == F;_»(X)(R) non-empty and connected,

Comessatti

where the right vertical arrow follows by studying the image of

Sym&~1 Q(E=2(R) — Sym& 1 PY(R) = PEL(R).
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N even and k

Thank you!
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