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k : arbitrary field of characteristic 6= 2
X ⊂ PN : smooth complete intersections of 2 quadrics

r ≥ 0, Fr (X ) := Fano scheme of r -planes (i.e., Pr ⊂ PN) on X .

Description of Fr (X ):

r N odd N even

r = bN2 c − 1
(max)

torsor under
an abelian variety

(Weil ’50’s)

finite,
not geometrically integral

0 ≤ r ≤ bN2 c − 2
Fano,

i.e., −K ample
Fano,

i.e., −K ample

N odd: Fr (X ) is geometrically a certain moduli of vector bundles
on a hyperelliptic curve (Desale–Ramanan ’78, Ramanan ’81).

→ arithmetic applications
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A variety is rational if it is birational to a projective space.

If there exists a line L ⊂ X defined over k, consider the projection
away from L: πL : X 99K PN−2.

Fibers of πL?

πL is birational, hence X is rational.
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Theorem 1 (Ji–S., ’24)

If Fr+1(X )(k) 6= ∅, then Fr (X ) is rational.

Immediate consequence:

Corollary

Fr (X ) is geometrically rational for all 0 ≤ r ≤ bN2 c − 2.

r = 0, bN2 c− 2: known (latter by combining: Desale–Ramanan
’77, Newstead ’80, Bauer ’91, Casagrande ’15)

0 < r < bN2 c − 2: new, even over C!
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Theorem 2 (Ji–S., ’24)

For N ≥ 6, the following are equivalent:

1 F1(X ) is separably unirational;

2 F1(X ) is unirational;

3 F1(X )(k) 6= ∅.
If k = R, the above result holds for Fr (X ) for all 0 ≤ r ≤ bN2 c − 2.

This extends an analogous result for F0(X ) = X
(Manin ’86, Knecht ’15, Colliot-Thélène–Sansuc–Swinnerton-Dyer
’87, Benoist–Wittenberg ’23).
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Let ϕ : Q → P1 be the pencil of quadrics, associated to X .

Assume Fr (X )(k) 6= ∅ and fix ` ∈ Fr (X )(k).

Q PN−r−1 × P1 ⊃ Q(r) := locus of special fibers

P1

π`×id

ϕ

ϕ(r) quadric fibration (hyperbolic reduction of ϕ)

Fibers of π` × id:
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Similarly,

X
π`
99K PN−r−1 ⊃ Q̃(r):=locus of special (and more special) fibers

Fibers of π`:

Note
Q̃(r) ∼99K Q(r), m 7→ 〈`,m〉,

where the inverse is given by PN−r−1 × P1 → PN−r−1 .
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The birational equivalence class of Q(r) does NOT depend on `.

Indeed,
Qk(P1) ' Q

(r)
k(P1)

⊥ (hyperbolic space)

as quadratic spaces, hence the Witt cancellation theorem shows

that the isomorphism class of Q(r)
k(P1)

does not depend on `.
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Here is a birational structure theorem of Fr (X ) in terms of Q(r).

Theorem 3 (Ji–S., ’24)

One of the following conditions holds:

1 Fr (X ) is birational to Symr+1Q(r);

2 N is even and r = bN2 c − 1, in which case Fr (X ) is finite and
not geometrically integral.

Two special cases were previously known before:

r = 0, which claims X ∼ Q(0)

(Colliot-Thélène–Sansuc–Swinnerton-Dyer ’87);

N is odd, r = bN2 c − 1, and k = k (Reid ’72).
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Proof of Thm 3:

r = 1: Let m ∈ F1(X ) be general. Then 〈`,m〉 = P3.

〈`,m〉∩X = `∪m∪m1∪m2

Define F1(X ) 99K Sym2Q(1), m 7→ (m1,m2), which is generically
one-to-one onto its image. Similar for r > 1.

Finally, dimFr (X ) = dim Symr+1 Q(r) = (r + 1)(N − 2r − 2),
hence the above map is dominant, thus birational. Q.E.D.
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Thm 3 ⇒ Thm 1:

If Fr (X )(k) 6= ∅, then φ(r) : Q(r) → P1 has a section.
⇒ Q(r) is rational.
⇒ Fr (X ) ∼ Symr+1 Q(r) is rational. Q.E.D.

We have used:
A symmetric power of a rational variety is rational (Mattuck ’69).
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Thm 3 ⇒ Thm 2 (k arbitrary):

W.T.S. ∀N ≥ 6, F1(X )(k) 6= ∅ ⇒ F1(X ) separably uniratinonal.

A symmetric power of a separably unirational variety is separably
unirational.

E.T.S. ∀N ≥ 6, F1(X )(k) 6= ∅ ⇒ Q(1) separably uniratinonal.

We prove this by induction on N
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N = 6: X ⊂ P6

ϕ(1) : Q(1) → P1 is a conic bundle with 7 singular fibers.

Moreover, Q(1)(k) 6= ∅,
because ∩p∈`TpX = P2 ⊃ ` and (∩p∈`TpX ) ∩ X = `.

Such a conic bundle has a dominant map from P2 of degree 8
(Kollár–Mella ’17).

∴ Q(1) is separably unirational. (Recall chark 6= 2.)
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N > 6: X ⊂ PN

Choose a general pencil of hyperplane sections of X containing `.

We get Q(1) 99K P1 whose generic fiber equals the hyperbolic
reduction of Y ⊂ PN−1 with respect to `.

By the induction hypothesis, the generic fiber is separably
unirational, and so is Q(1). Q.E.D.
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Thm 3 ⇒ Thm 2 (k = R):

Q̃(r) ⊂ PN−r−1 has odd degree.
(For instance, Q̃(0) ⊂ PN−1 is a cubic hypersurface.)
⇒ Q(r) has a 0-cycle of degree 1.
⇒ Q(r)(R) 6= ∅

Apply a unirationality result (Kollár ’99) to the quadric fibration
φ(r) : Q(r) → P1. Q.E.D.

A conic bundle over P1 with a 0-cycle of degree 1 does not
necessarily have a k-point (Colliot-Thélène–Coray ’79).
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Next: We will further analyze rationality of Fr (X ) for r = bN2 c − 2,
the second maximal case.
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N := 2g + 1 (g ≥ 2)

max = g − 1, second maximal = g − 2

Theorem 4 (Ji–S., ’24)

Let X ⊂ P2g+1. Then:
Fg−2(X )(k) 6= ∅ and Q(g−2) rational ⇔ Fg−1(X )(k) 6= ∅.

g = 2: X ⊂ P5 is rational ⇔ F1(X )(k) 6= ∅
(Hassett–Tschinkel 18’ for k = R, Benoist–Wittenberg ’23 for
k arbitrary).

g ≥ 2: partial converse to Thm 1, different from the full
converse by a symmetric power:
Q(g−2) ↔ Fg−2(X ) ∼ Symg−1Q(g−2).

An analogue may fail for N even.
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Towards the proof of Thm 4:

Fg−1(X ) is a torsor under the Jacobian of C , where C is a
hyperelliptic curve of genus g associated to ϕ : Q → P1 (Wang
’18).

Fg (ϕ) P1

C .

2:1

W.T.S. Fg−1(X ) splits ⇔ Q(g−2) defined & rational.
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Note: dimQ(g−2) = 3.

Idea: Clemens–Griffiths method à la Benoist–Wittenberg.

The goal is to show that Fg−1(X ) is a torsor under the
intermediate Jacobian of Q(g−2) (∼= Jac(C ) as p.p.a.v.) and it
splits when Q(g−2) is rational.

This involves analysis on the algebraic equivalence class of a
section of the quadric surface fibration φ(g−2) : Q(g−2) → P1.
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N := 2g (g ≥ 2)

max = g − 1, second maximal = g − 2

Theorem 5 (Ji–S., 24’)

Let X ⊂ P2g over R. Then:
Fg−2(X ) rational ⇔ Fg−2(X )(R) non-empty and connected.

⇒ is true for all smooth projective varieties over R
(Comessatti, 1912).

X ⊂ P6
R rational ⇔ X (R) non-empty and connected

(Hassett–Kollár–Tschinkel ’22).

An analogue may fail for N odd.
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Towards the proof of Thm 5:

Let X as in Thm 5 and assume Fg−2(X )(R) 6= ∅.

ϕ(g−2) : Q(g−2) → P1 is a conic bundle, hence Q(g−2) is a
geometrically rational surface.

A geometrically rational surface defined over R is rational if and
only if its real locus is non-empty and connected (Comessatti
1913).
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We get

Q(g−2) rational Q(g−2)(R) non-empty and connected

Fg−2(X ) rational Fg−2(X )(R) non-empty and connected,

Thm 3 + Mattuck

Comessatti

Comessatti

where the right vertical arrow follows by studying the image of

Symg−1Q(g−2)(R)→ Symg−1 P1(R)
∼−→ Pg−1(R).
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Thank you!
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