Rationality questions for
 Fano schemes of intersections of two quadrics

(joint work with Lena Ji)

Fumiaki Suzuki
Leibniz University Hannover

April 12, 2024

Table of Contents

(1) Introduction
(2) Hyperbolic reductions
(3) N odd
(4) N even and $k=\mathbb{R}$
k : arbitrary field of characteristic $\neq 2$
$X \subset \mathbb{P}^{N}$: smooth complete intersections of 2 quadrics
$r \geq 0, F_{r}(X):=$ Fano scheme of r-planes (i.e., $\mathbb{P}^{r} \subset \mathbb{P}^{N}$) on X.
Description of $F_{r}(X)$:

r	N odd	N even
$r=\left\lfloor\frac{N}{2}\right\rfloor-1$	torsor under	
(\max)	an abelian variety	
(Weil '50's)	not geometrically integral	
$0 \leq r \leq\left\lfloor\frac{N}{2}\right\rfloor-2$	Fano,	Fano,
i.e., $-K$ ample	i.e., $-K$ ample	

N odd: $F_{r}(X)$ is geometrically a certain moduli of vector bundles on a hyperelliptic curve (Desale-Ramanan '78, Ramanan '81).
\rightarrow arithmetic applications

A variety is rational if it is birational to a projective space.
If there exists a line $L \subset X$ defined over k, consider the projection away from $L: \pi_{L}: X \rightarrow \mathbb{P}^{N-2}$.

Fibers of π_{L} ?

π_{L} is birational, hence X is rational.

A variety is rational if it is birational to a projective space.
If there exists a line $L \subset X$ defined over k, consider the projection away from $L: \pi_{L}: X \rightarrow \mathbb{P}^{N-2}$.

Fibers of π_{L} ?

π_{L} is birational, hence X is rational.

Theorem 1 (Ji-S., '24)

If $F_{r+1}(X)(k) \neq \emptyset$, then $F_{r}(X)$ is rational.

Immediate consequence:

Corollary

$F_{r}(X)$ is geometrically rational for all $0 \leq r \leq\left\lfloor\frac{N}{2}\right\rfloor-2$.

- $r=0,\left\lfloor\frac{N}{2}\right\rfloor-2$: known (latter by combining: Desale-Ramanan '77, Newstead '80, Bauer '91, Casagrande '15)
- $0<r<\left\lfloor\frac{N}{2}\right\rfloor-2$: new, even over \mathbb{C} !

Theorem 2 (Ji-S., '24)

For $N \geq 6$, the following are equivalent:
(1) $F_{1}(X)$ is separably unirational;
(2) $F_{1}(X)$ is unirational;
(3) $F_{1}(X)(k) \neq \emptyset$.

If $k=\mathbb{R}$, the above result holds for $F_{r}(X)$ for all $0 \leq r \leq\left\lfloor\frac{N}{2}\right\rfloor-2$.
This extends an analogous result for $F_{0}(X)=X$
(Manin '86, Knecht '15, Colliot-Thélène-Sansuc-Swinnerton-Dyer '87, Benoist-Wittenberg '23).

Table of Contents

(1) Introduction
(2) Hyperbolic reductions
(3) N odd
4. N even and $k=\mathbb{R}$

Let $\varphi: \mathcal{Q} \rightarrow \mathbb{P}^{1}$ be the pencil of quadrics, associated to X.
Assume $F_{r}(X)(k) \neq \emptyset$ and fix $\ell \in F_{r}(X)(k)$.

Fibers of $\pi_{\ell} \times$ id:

Similarly,
$X \xrightarrow{\pi_{\ell}} \mathbb{P}^{N-r-1} \supset \widetilde{\mathcal{Q}}^{(r)}:=$ locus of special (and more special) fibers
Fibers of π_{ℓ} :

Note

$$
\widetilde{\mathcal{Q}}^{(r)} \sim \mathcal{Q}^{(r)}, m \mapsto\langle\ell, m\rangle,
$$

where the inverse is given by $\mathbb{P}^{N-r-1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{N-r-1}$.

The birational equivalence class of $\mathcal{Q}^{(r)}$ does NOT depend on ℓ. Indeed,

$$
\mathcal{Q}_{k\left(\mathbb{P}^{1}\right)} \simeq \mathcal{Q}_{k\left(\mathbb{P}^{1}\right)}^{(r)} \perp(\text { hyperbolic space })
$$

as quadratic spaces, hence the Witt cancellation theorem shows that the isomorphism class of $\mathcal{Q}_{k\left(\mathbb{P}^{1}\right)}^{(r)}$ does not depend on ℓ.

Here is a birational structure theorem of $F_{r}(X)$ in terms of $\mathcal{Q}^{(r)}$.

Theorem 3 (Ji-S., '24)

One of the following conditions holds:
(1) $F_{r}(X)$ is birational to $\operatorname{Sym}^{r+1} \mathcal{Q}^{(r)}$;
(2) N is even and $r=\left\lfloor\frac{N}{2}\right\rfloor-1$, in which case $F_{r}(X)$ is finite and not geometrically integral.

Two special cases were previously known before:

- $r=0$, which claims $X \sim \mathcal{Q}^{(0)}$
(Colliot-Thélène-Sansuc-Swinnerton-Dyer '87);
- N is odd, $r=\left\lfloor\frac{N}{2}\right\rfloor-1$, and $k=\bar{k}$ (Reid '72).

Proof of Thm 3:

$r=1$: Let $m \in F_{1}(X)$ be general. Then $\langle\ell, m\rangle=\mathbb{P}^{3}$.

$$
\langle\ell, m\rangle \cap X=\ell \cup m \cup m_{1} \cup m_{2}
$$

Define $F_{1}(X) \longrightarrow \operatorname{Sym}^{2} \mathcal{Q}^{(1)}, m \mapsto\left(m_{1}, m_{2}\right)$, which is generically one-to-one onto its image. Similar for $r>1$.

Finally, $\operatorname{dim} F_{r}(X)=\operatorname{dim} \operatorname{Sym}^{r+1} Q^{(r)}=(r+1)(N-2 r-2)$, hence the above map is dominant, thus birational.
Q.E.D.

Proof of Thm 3:

$r=1$: Let $m \in F_{1}(X)$ be general. Then $\langle\ell, m\rangle=\mathbb{P}^{3}$.

$$
\langle\ell, m\rangle \cap X=\ell \cup m \cup m_{1} \cup m_{2}
$$

Define $F_{1}(X) \longrightarrow \operatorname{Sym}^{2} \mathcal{Q}^{(1)}, m \mapsto\left(m_{1}, m_{2}\right)$, which is generically one-to-one onto its image. Similar for $r>1$.

Finally, $\operatorname{dim} F_{r}(X)=\operatorname{dim} \operatorname{Sym}^{r+1} Q^{(r)}=(r+1)(N-2 r-2)$, hence the above map is dominant, thus birational.
Q.E.D.

Thm $3 \Rightarrow$ Thm 1:
If $F_{r}(X)(k) \neq \emptyset$, then $\phi^{(r)}: \mathcal{Q}^{(r)} \rightarrow \mathbb{P}^{1}$ has a section.
$\Rightarrow \mathcal{Q}^{(r)}$ is rational.
$\Rightarrow F_{r}(X) \sim \operatorname{Sym}^{r+1} Q^{(r)}$ is rational.
Q.E.D.

We have used:
A symmetric power of a rational variety is rational (Mattuck '69).

Thm $3 \Rightarrow$ Thm 2 (k arbitrary):
W.T.S. $\forall N \geq 6, F_{1}(X)(k) \neq \emptyset \Rightarrow F_{1}(X)$ separably uniratinonal.

A symmetric power of a separably unirational variety is separably unirational.
E.T.S. $\forall N \geq 6, F_{1}(X)(k) \neq \emptyset \Rightarrow \mathcal{Q}^{(1)}$ separably uniratinonal.

We prove this by induction on N

$N=6: X \subset \mathbb{P}^{6}$

$\varphi^{(1)}: \mathcal{Q}^{(1)} \rightarrow \mathbb{P}^{1}$ is a conic bundle with 7 singular fibers.
Moreover, $\mathcal{Q}^{(1)}(k) \neq \emptyset$, because $\cap_{p \in \ell} T_{p} X=\mathbb{P}^{2} \supset \ell$ and $\left(\cap_{p \in \ell} T_{p} X\right) \cap X=\ell$.

Such a conic bundle has a dominant map from \mathbb{P}^{2} of degree 8 (Kollár-Mella '17).
$\therefore \mathcal{Q}^{(1)}$ is separably unirational. (Recall chark $\neq 2$.)
$\underline{N>6}: X \subset \mathbb{P}^{N}$
Choose a general pencil of hyperplane sections of X containing ℓ.
We get $\mathcal{Q}^{(1)} \longrightarrow \mathbb{P}^{1}$ whose generic fiber equals the hyperbolic reduction of $Y \subset \mathbb{P}^{N-1}$ with respect to ℓ.

By the induction hypothesis, the generic fiber is separably unirational, and so is $\mathcal{Q}^{(1)}$.

Thm $3 \Rightarrow$ Thm $2(k=\mathbb{R})$:
$\widetilde{\mathcal{Q}}^{(r)} \subset \mathbb{P}^{N-r-1}$ has odd degree.
(For instance, $\widetilde{\mathcal{Q}}^{(0)} \subset \mathbb{P}^{N-1}$ is a cubic hypersurface.)
$\Rightarrow \mathcal{Q}^{(r)}$ has a 0 -cycle of degree 1 .
$\Rightarrow \mathcal{Q}^{(r)}(\mathbb{R}) \neq \emptyset$
Apply a unirationality result (Kollár '99) to the quadric fibration $\phi^{(r)}: \mathcal{Q}^{(r)} \rightarrow \mathbb{P}^{1}$.
Q.E.D.

A conic bundle over \mathbb{P}^{1} with a 0 -cycle of degree 1 does not necessarily have a k-point (Colliot-Thélène-Coray '79).

Next: We will further analyze rationality of $F_{r}(X)$ for $r=\left\lfloor\frac{N}{2}\right\rfloor-2$, the second maximal case.

Table of Contents

(1) Introduction

(2) Hyperbolic reductions
(3) N odd
(4) N even and $k=\mathbb{R}$
$N:=2 g+1(g \geq 2)$
$\max =g-1$, second maximal $=g-2$

Theorem 4 (Ji-S., '24)

Let $X \subset \mathbb{P}^{2 g+1}$. Then:
$F_{g-2}(X)(k) \neq \emptyset$ and $\mathcal{Q}^{(g-2)}$ rational $\Leftrightarrow F_{g-1}(X)(k) \neq \emptyset$.

- $g=2: X \subset \mathbb{P}^{5}$ is rational $\Leftrightarrow F_{1}(X)(k) \neq \emptyset$
(Hassett-Tschinkel 18' for $k=\mathbb{R}$, Benoist-Wittenberg '23 for k arbitrary).
- $g \geq 2$: partial converse to Thm 1, different from the full converse by a symmetric power: $\mathcal{Q}^{(g-2)} \leftrightarrow F_{g-2}(X) \sim \operatorname{Sym}^{g-1} \mathcal{Q}^{(g-2)}$.
- An analogue may fail for N even.

Towards the proof of Thm 4:

$F_{g-1}(X)$ is a torsor under the Jacobian of C, where C is a hyperelliptic curve of genus g associated to $\varphi: \mathcal{Q} \rightarrow \mathbb{P}^{1}$ (Wang '18).

W.T.S. $F_{g-1}(X)$ splits $\Leftrightarrow \mathcal{Q}^{(g-2)}$ defined \& rational.

Note: $\operatorname{dim} \mathcal{Q}^{(g-2)}=3$.
Idea: Clemens-Griffiths method à la Benoist-Wittenberg.
The goal is to show that $F_{g-1}(X)$ is a torsor under the intermediate Jacobian of $\mathcal{Q}^{(g-2)}(\cong \operatorname{Jac}(C)$ as p.p.a.v. $)$ and it splits when $\mathcal{Q}^{(g-2)}$ is rational.

This involves analysis on the algebraic equivalence class of a section of the quadric surface fibration $\phi^{(g-2)}: \mathcal{Q}^{(g-2)} \rightarrow \mathbb{P}^{1}$.

Table of Contents

(1) Introduction

(2) Hyperbolic reductions
(3) N odd
(4) N even and $k=\mathbb{R}$
$N:=2 g(g \geq 2)$
$\max =g-1$, second maximal $=g-2$

Theorem 5 (Ji-S., 24')

Let $X \subset \mathbb{P}^{2 g}$ over \mathbb{R}. Then:
$F_{g-2}(X)$ rational $\Leftrightarrow F_{g-2}(X)(\mathbb{R})$ non-empty and connected.

- \Rightarrow is true for all smooth projective varieties over \mathbb{R} (Comessatti, 1912).
- $X \subset \mathbb{P}_{\mathbb{R}}^{6}$ rational $\Leftrightarrow X(\mathbb{R})$ non-empty and connected (Hassett-Kollár-Tschinkel '22).
- An analogue may fail for N odd.

Towards the proof of Thm 5:
Let X as in Thm 5 and assume $F_{g-2}(X)(\mathbb{R}) \neq \emptyset$.
$\varphi^{(g-2)}: \mathcal{Q}^{(g-2)} \rightarrow \mathbb{P}^{1}$ is a conic bundle, hence $\mathcal{Q}^{(g-2)}$ is a geometrically rational surface.

A geometrically rational surface defined over \mathbb{R} is rational if and only if its real locus is non-empty and connected (Comessatti 1913).

We get

$$
\mathcal{Q}^{(g-2)} \text { rational } \stackrel{\text { Comessatti }}{\Longleftrightarrow} \mathcal{Q}^{(g-2)}(\mathbb{R}) \text { non-empty and connected }
$$

Thm $3+$ Mattuck \downarrow介

$$
F_{g-2}(X) \text { rational } \underset{\text { Comessatti }}{\longrightarrow} F_{g-2}(X)(\mathbb{R}) \text { non-empty and connected, }
$$

where the right vertical arrow follows by studying the image of

$$
\operatorname{Sym}^{g-1} \mathcal{Q}^{(g-2)}(\mathbb{R}) \rightarrow \operatorname{Sym}^{g-1} \mathbb{P}^{1}(\mathbb{R}) \xrightarrow{\sim} \mathbb{P}^{g-1}(\mathbb{R})
$$

Thank you!

